Currently showing only Sustainability Resources
Page 4 of 6

Democratizing CRISPR? Stories, practices, and politics of science and governance on the agricultural gene editing frontier

Publication date: 25/02/2020
Resource type: Adobe Acrobat (.pdf)

Transferring the laboratory to the wild: An emerging era of environmental genetic engineering

Publication date: 01/11/2019

The last 30 years of commercialisation of genetically modified organisms (GMOs) have thus far been restricted to a limited number of species, predominantly maize and soy.

Developers are reacting to plateauing global adoption rates of these commercialised first-generation genetically engineered (GE) crops, which are plagued by declining trait efficacy and sustained market rejection, by reinvigorating efforts to usher in new crops and organisms.

New genetic engineering techniques such as genome editing and new delivery techniques have facilitated an emerging trend to genetically engineer organisms in the wild, moving the engineering process to agroecosystems and beyond, essentially converting the environment into the laboratory.

Previous techniques originally developed as research tools in contained-use settings, or for gene therapy in clinical settings, may be released into the environment to genetically engineer agricultural and wild organisms unchecked.

This briefing form the Third World Network summarises presents examples of research and applications.

Resource type: Adobe Acrobat (.pdf)

Creating a Sustainable Food Future – A Menu of Solutions to Feed Nearly 10 Billion People by 2050

Publication date: 17/07/2019

As the global population grows from 7 billion in 2010 to a projected 9.8 billion in 2050, and incomes grow across the developing world, overall food demand is on course to increase by more than 50 percent, and demand for animal-based foods by nearly 70 percent. Yet today, hundreds of millions of people remain hungry, agriculture already uses almost half of the world’s vegetated land, and agriculture and related land-use change generate one-quarter of annual greenhouse gas (GHG) emissions.

This synthesis report proposes a menu of options that could allow the world to achieve a sustainable food future by meeting growing demands for food, avoiding deforestation, and reforesting or restoring abandoned and unproductive land—and in ways that help stabilize the climate, promote economic development, and reduce poverty.

Resource type: Adobe Acrobat (.pdf)

Promises and perils of gene drives: Navigating the communication of complex, post-normal science

Publication date: 16/04/2019

In November of 2017, an interdisciplinary panel discussed the complexities of gene drive applications as part of the third Sackler Colloquium on “The Science of Science Communication.” The panel brought together a social scientist, life scientist, and journalist to discuss the issue from each of their unique perspectives. This paper builds on the ideas and conversations from the session to provide a more nuanced discussion about the context surrounding responsible communication and decision-making for cases of post-normal science. Deciding to use gene drives to control and suppress pests will involve more than a technical assessment of the risks involved, and responsible decision-making regarding their use will require concerted efforts from multiple actors. We provide a review of gene drives and their potential applications, as well as the role of journalists in communicating the extent of uncertainties around specific projects. We also discuss the roles of public opinion and online environments in public engagement with scientific processes. We conclude with specific recommendations about how to address current challenges and foster more effective communication and decision-making for complex, post-normal issues, such as gene drives.

Resource type: Adobe Acrobat (.pdf)

Embracing uncertainty: what are the implications for sustainability and development?

Publication date: 23/01/2019

Uncertainties can make it hard to plan ahead. But recognising them can help to reveal new questions and choices. What kinds of uncertainty are there, why do they matter for sustainability, and what ideas, approaches and methods can help us to respond to them?

Uncertainty is a concept that defines our times. Every media headline seems to assert that things are uncertain, and increasingly so. Whether it’s climate change, disease outbreaks, economic conditions or political settlements, the same narrative exists.

Helga Nowotny, in her book The Cunning of Uncertainty, argues that “uncertainty is written into the script of life”. But how should we understand ‘uncertainty’, and why does it matter? Are we equipped for responding to seemingly accelerating uncertainties across different policy domains?

A conventional, managerial and technocratic approach is to construct such challenges as risks – where the probabilities of future outcomes are known, or at least can be estimated. The paraphernalia of risk assessment and management are familiar, derived from engineering approaches. These approaches are good for some cases, such as designing a bridge or road, but not for others, where complex socio-ecological dynamics are involved.

 

Resource type: Web page URL

Towards resilience through systems-based plant breeding. A review

Publication date: 22/08/2018

How the growing world population can feed itself is a crucial, multi-dimensional problem that goes beyond sustainable development. Crop production will be affected by many changes in its climatic, agronomic, economic, and societal contexts. Therefore, breeders are challenged to produce cultivars that strengthen both ecological and societal resilience by striving for six international sustainability targets: food security, safety and quality; food and seed sovereignty; social justice; agrobiodiversity; ecosystem services; and climate robustness.

Against this background, we review the state of the art in plant breeding by distinguishing four paradigmatic orientations that currently co-exist: community-based breeding, ecosystem-based breeding, trait-based breeding, and corporate-based breeding, analyzing differences among these orientations. Our main findings are: (1) all four orientations have significant value but none alone will achieve all six sustainability targets; (2) therefore, an overarching approach is needed: “systems-based breeding,” an orientation with the potential to synergize the strengths of the ways of thinking in the current paradigmatic orientations; (3) achieving that requires specific knowledge development and integration, a multitude of suitable breeding strategies and tools, and entrepreneurship, but also a change in attitude based on corporate responsibility, circular economy and true-cost accounting, and fair and green policies.

We conclude that systems-based breeding can create strong interactions between all system components. While seeds are part of the common good and the basis of agrobiodiversity, a diversity in breeding approaches, based on different entrepreneurial approaches, can also be considered part of the required agrobiodiversity. To enable systems-based breeding to play a major role in creating sustainable agriculture, a shared sense of urgency is needed to realize the required changes in breeding approaches, institutions, regulations and protocols. Based on this concept of systems-based breeding, there are opportunities for breeders to play an active role in the development of an ecologically and societally resilient, sustainable agriculture.

Resource type: Adobe Acrobat (.pdf)

Social-ecological outcomes of agricultural intensification

Publication date: 14/06/2018

Sustainable intensification of agriculture is seen by many in science and policy as a flagship strategy for helping to meet global social and ecological commitments — such as ending hunger and protecting biodiversity — as laid out in the UN Sustainable Development Goals (SDGs) and Paris climate agreement.

However, there is limited evidence on the conditions that support positive social and ecological outcomes.

The authors address this knowledge gap by synthesizing research that analyses how agricultural intensification affects both ecosystem services and human well-being in low- and middle-income countries.

Overall, they find that agricultural intensification is rarely found to lead to simultaneous positive ecosystem service and well-being outcomes. This is particularly the case when ecosystem services other than food provisioning are taken into consideration.

The researchers found. for example, that it is important to look at how intensification is introduced, for example whether it is initiated by farmers or forced upon them. Change is often induced or imposed for more vulnerable population groups who often lack sufficient money or security of land tenure to make these changes work. Smallholders in the cases studied often struggle to move from subsistence to commercial farming and the challenges involved are not currently well reflected in many intensification strategies.

Another  finding is that the distribution of wellbeing impacts is uneven, generally favouring better off individuals at the expense of poorer ones. For example, a study in Bangladesh showed how rapid uptake of saltwater shrimp production is enabling investors and large landowners to get higher profits while poorer people are left with the environmental consequences that affect their lives and livelihoods long term.

The authors also found that the infrequent ‘win-win’ outcomes occur mostly in situations where intensification involves increased use of inputs such as fertilizers, irrigation, seeds, and labour.

Resource type: Adobe Acrobat (.pdf)

Soil pollution – a hidden reality

Publication date: 02/05/2018

Soil pollution poses a worrisome threat to agricultural productivity, food safety, and human health, but far too little is known about the scale and severity of that threat,

Concerns about soil pollution are growing in every region. Recently, the United Nations Environmental Assembly (UNEA-3) adopted a resolution calling for accelerated actions and collaboration to address and manage soil pollution. This consensus, achieved by more than 170 countries, is a clear sign of the global relevance of soil pollution and of the willingness of these countries to develop concrete solutions to address the causes and impacts of this major threat.

The main anthropogenic sources of soil pollution are the chemicals used in or produced as byproducts of industrial activities, domestic, livestock and municipal wastes (including wastewater), agrochemicals, and petroleum-derived products. These chemicals are released to the environment accidentally, for example from oil spills or leaching from landfills, or intentionally, as is the case with the use of fertilizers and pesticides, irrigation with untreated wastewater, or land application of sewage sludge. Soil pollution also results from atmospheric deposition from smelting, transportation, spray drift from pesticide applications and incomplete combustion of many substances as well as radionuclide deposition from atmospheric weapons testing and nuclear accidents. New concerns are being raised about emerging pollutants such as pharmaceuticals, endocrine disruptors, hormones and toxins, among others, and biological pollutants, such as micropollutants in soils, which include bacteria and viruses.

This book aims to summarise the state of the art of soil pollution, and to identify the main pollutants and their sources affecting human health and the environment, paying special attention to those pollutants that are present in agricultural systems and that reach humans through the food chain. It concludes with some case studies of the best available techniques for assessing and remediating contaminated soils.

 

Resource type: Adobe Acrobat (.pdf)

For whom? Questioning the food and farming research agenda

Publication date: 01/01/2018

A special magazine exploring where the power lies in setting our food and farming research agenda.

The UK’s Food Ethics Council asked international experts to explore where the power lies in setting our food and farming research agenda. We also asked who benefits from both publicly and privately funded research. We believe the status quo research agenda is not delivering the public good required for a food system that serves the needs of people, planet and animals.

This special collection of articles starts addressing key questions about how the research agenda is set in food and farming, unmasking and challenging the dominant research paradigm, and highlighting inclusive alternatives to deliver public good. The report is aimed at research institutions, funding bodies, government officials, CSOs and anyone with an interest in redefining the research agenda for the public good, especially in post-Brexit UK.

The report includes contributions from: Miguel Altieri, Molly Anderson, Annelie Bernhart, Helen Browning, Ibrahima Coulibaly, Dan Crossley, Liza Draper, David Drew MP, Ralph Early, Liz Hosken, Toby Hodgkin, IPES-Food, Nic Lampkin, Tim Lang, Les Levidow, Steve McLean, Tom MacMillan, Renato Maluf, Ben Mepham, Dunja Mijatovic, Pat Mooney, Marion Nestle, Clara Nicholls, Helena Paul, Susanne Padel, Michel Pimbert, Jonathan Porritt, Claire Robinson, Suman Sahai, Ruth Segal, Steve Tones and Melanie Welham.

Resource type: Adobe Acrobat (.pdf)

Compatibility of breeding techniques in organic systems

Publication date: 01/01/2018

This IFOAM position paper states that “New genetic engineering technologies …are not compatible with organic farming and must not be used in organic breeding or organic production.” It goes on to list the specific techniques, and calls for “clear legal definitions to be in place which are regularly updated”.

The paper also states “Products obtained through genetic engineering processes should not be released into the environment. In any case such releases should not take place without a prior rigorous, multistakeholder designed and agreed risk assessment protocol that includes input from the organic sector and like-minded movements, and an assessment of the possibility to prevent the presence of such products in organic products and GMO-free products.”

IFOAM asks for the ‘Polluter Pays’ principle to be maintained. This means “On-going costs and harms to organic and non-GMO supply chains from contamination by these new techniques … should be borne by the developers and/or the company that puts the product on the market.” Although the principle is one of the EU directives, sadly it is not guaranteed in post-Brexit Britain.

Resource type: article: Web Page