We’ve scanned the web to bring together a library of interesting, thought-provoking articles, blogs, reports and academic papers that explore the issue of genetic engineering in food and farming from broader and deeper perspectives. Browse for inspiration or search by theme.

Currently showing only Conservation Resources
Page 1 of 1

Genetic engineering, nature conservation and biological diversity: boundaries of design

Publication date: 01/10/2022

Germany’s Federal Agency for Nature Conservation (BfN) presents its position on an international discussion surrounding research approaches to the genetic modification of wild organisms. Conclusions include:

  • Due to the complexity of biological diversity – from the molecular to the ecosystem level – the effects of genetically engineering wild organisms cannot be sufficiently assessed with the methods currently available.
  • The fundamental and necessary discussions on the compatibility of genetically engineering wild organisms with the requirements and the objectives laid down in section 1 of the German Federal Nature Conservation Act must be conducted.
  • Global biodiversity loss is progressing with tangible consequences. We need suitable instruments to stop it. Nevertheless, wild organisms must not be genetically modified solely based on the assumption of a potential benefit to nature conservation and with uncertainty about possible harm.
  • Along with its diversity, beauty and utility, nature’s uniqueness is a protected good in nature conservation that is firmly embedded in society and in legislation. Its intrinsic value imposes limits on the extent to which humans can intervene in nature to protect it. I
Resource type: Adobe Acrobat (.pdf)

The principles driving gene drives for conservation

Publication date: 01/09/2022

Scientists are exploring potential gene drive applications for managing invasive species and building resilience in keystone species threatened by climate change. The possibility to use gene drive for these conservation purposes has triggered significant interest in how to govern its development and eventual applications. We conducted qualitative documentary analysis to examine the range and substance of principles emerging in the governance of conservation gene drive. Such analysis aimed to better understand the aspirations guiding these applications and how scientists and other experts imagine their responsibility in this field. We found a collection of recommendations and prescriptions that could be organised into a set of seven emerging principles intended to shape the governance of gene drive in conservation: broad and empowered engagement; public acceptance; decision-making informed by broad ranging considerations, state and international collaboration; ethical frameworks; diverse expertise; and responsible self-regulation by developers. We lay bare these emergent principles, analyzing the way in which they are valued, prioritized, and their strengths and weaknesses.

Resource type: article: Web Page

Gene Drives in the UK, US, and Australian Press (2015–2019): How a New Focus on Responsibility Is Shaping Science Communication

Publication date: 25/01/2022
Gene drive is a controversial biotechnology for pest control. Despite a commitment from gene drive researchers to responsibility and the key role of the media in debates about science and technology, little research has been conducted on media reporting of gene drive. We employ metaphor and discourse analysis to explore how responsibility is reflected in the coverage of this technology in the U.S., U.K., and Australian press. The findings reveal a rhetorical strategy of trust-building by evoking the moral attributes of gene drive researchers. We discuss the implications of these findings for the communication of new technologies.
Resource type: article: Web Page

Transferring the laboratory to the wild: An emerging era of environmental genetic engineering

Publication date: 01/11/2019

The last 30 years of commercialisation of genetically modified organisms (GMOs) have thus far been restricted to a limited number of species, predominantly maize and soy.

Developers are reacting to plateauing global adoption rates of these commercialised first-generation genetically engineered (GE) crops, which are plagued by declining trait efficacy and sustained market rejection, by reinvigorating efforts to usher in new crops and organisms.

New genetic engineering techniques such as genome editing and new delivery techniques have facilitated an emerging trend to genetically engineer organisms in the wild, moving the engineering process to agroecosystems and beyond, essentially converting the environment into the laboratory.

Previous techniques originally developed as research tools in contained-use settings, or for gene therapy in clinical settings, may be released into the environment to genetically engineer agricultural and wild organisms unchecked.

This briefing form the Third World Network summarises presents examples of research and applications.

Resource type: Adobe Acrobat (.pdf)