We’ve scanned the web to bring together a library of interesting, thought-provoking articles, blogs, reports and academic papers that explore the issue of genetic engineering in food and farming from broader and deeper perspectives. Browse for inspiration or search by theme.

Currently showing only Science & Technology Resources
Page 1 of 6

Remote Control and Peasant Intelligence – On Automating Decisions, Suppressing Knowledges and Transforming Ways of Knowing

Publication date: 14/11/2023

Digital technologies are often touted as a silver bullet to respond to the interconnected crises of food, climate and biodiversity. Although they are presented by their promoters in governments and corporations as a necessary tool for innovation and for making food systems more efficient and sustainable, the reality is much more complex.

This report examines the implications of digital technologies taking hold in European agriculture. It focuses particularly on frictions between new digital technologies and peasant autonomy, agroecology and food sovereignty.

Technologies are not mute objects. Their development, distribution and use are inextricably linked to economic and political interests, cultural meanings, different types of knowledge as well as social and ecological relationships. In a context where money, technological know-how and power are highly concentrated in the hands of a few large companies and countries, the digitalization of food and agriculture is set to reinforce inequalities and discrimination.

Resource type: article: Web Page

Measuring agroecology: Introducing a methodological framework and a community of practice approach

Publication date: 03/11/2023

. In this article, we report on a process of collaboratively developing a methodological framework, using the High Level Panel of Experts of the Committee on World Food Security 13 principles of agroecology as foundation. This framework overcomes some limitations of previous methodologies for evaluating degrees of agroecological integration (including those using Gliessman’s 5 levels of food system change) and facilitates a robust qualitative assessment of projects, programs, and project portfolios with respect to their “agroecologicalness.” The framework conceives of agroecology as paradigm-shifting rather than as incremental improvements to existing food systems. It enables global comparability as well as local contextualization of each principle. While the need for this framework arose from the desire to monitor—and increase—financial support for an urgently needed transformation toward agroecology, the framework can equally contribute to the design of projects and programs, which aim to radically transform food and farming systems. It also has value as an educational tool, in specifying through statements of value and concrete examples, what agroecological work aims at.

Resource type: article: Web Page

Genetic modification can improve crop yields — but stop overselling it

Publication date: 20/09/2023
Over the past two decades, many journals have published papers describing how modifying one or a few genes can result in substantial increases in crop yields. The reported increases range from 10% to 68%, and the crops analysed include rice, maize (corn), tobacco and soya bean.
These studies have contributed important insights in molecular biology and gene discovery. But many are the results of tests conducted in greenhouses or in small-scale field trials — the latter typically involving plants grown in small plots. Few, if any, have used the experimental designs needed to evaluate crop performance in real-world environments. And hardly any findings have translated into yield increases on actual farms.
Especially in the context of climate change and a growing human population, the growth of misleading claims around yields has become a cause of concern to us.
Resource type: article: Web Page

Gene Editing: the Ethical Questions

Publication date: 28/07/2023

This blog employs a food ethics lens to delve into some of the ethical issues surrounding gene-editing, assessing intended and unintended consequences. Issues discussed include patents, herbicide-tolerant traits, gene drives and food safety.

Resource type: article: Web Page

Beyond the Genome: Genetically Modified Crops in Africa and the Implications for Genome Editing

Publication date: 01/01/2023

This article makes two interventions. First, it identifies the discursive continuity linking genome editing and the earlier technology of genetic modification. Second, it offers a suite of recommendations regarding how lessons learned from GM crops might be integrated into future breeding programmes focused on genome editing. Ultimately, the authors argue that donors, policymakers and scientists should move beyond the genome towards systems-level thinking by prioritizing the co-development of technologies with farmers; using plant material that is unencumbered by intellectual property restrictions and therefore accessible to resource-poor farmers; and acknowledging that seeds are components of complex and dynamic agroecological production systems. If these lessons are not heeded, genome-editing projects are in danger of repeating mistakes of the past

Resource type: article: Web Page

Unintended Genomic Outcomes in Current and Next Generation GM Techniques: A Systematic Review

Publication date: 07/11/2022

Here, we systematically review the scientific literature for studies that have investigated unintended genomic alterations in plants modified by the following GM techniques: Agrobacterium tumefaciens-mediated gene transfer, biolistic bombardment, and CRISPR-Cas9 delivered via Agrobacterium-mediated gene transfer (DNA-based), biolistic bombardment (DNA-based) and as ribonucleoprotein complexes (RNPs). The results of our literature review show that the impact of such techniques in host genomes varies from small nucleotide polymorphisms to large genomic variation, such as segmental duplication, chromosome truncation, trisomy, chromothripsis, breakage fusion bridge, including large rearrangements of DNA vector-backbone sequences. We have also reviewed the type of analytical method applied to investigate the genomic alterations and found that only five articles used whole genome sequencing in their analysis methods. In addition, larger structural variations detected in some studies would not be possible without long-read sequencing strategies, which shows a potential underestimation of such effects in the literature. As new technologies are constantly evolving, a more thorough examination of prospective analytical methods should be conducted in the future.

Resource type: article: Web Page

Gene Drives in the UK, US, and Australian Press (2015–2019): How a New Focus on Responsibility Is Shaping Science Communication

Publication date: 25/01/2022
Gene drive is a controversial biotechnology for pest control. Despite a commitment from gene drive researchers to responsibility and the key role of the media in debates about science and technology, little research has been conducted on media reporting of gene drive. We employ metaphor and discourse analysis to explore how responsibility is reflected in the coverage of this technology in the U.S., U.K., and Australian press. The findings reveal a rhetorical strategy of trust-building by evoking the moral attributes of gene drive researchers. We discuss the implications of these findings for the communication of new technologies.
Resource type: article: Web Page

The complexity of the gene and the precision of CRISPR: What is the gene that is being edited?

Publication date: 26/10/2021
This article argues that the polarization around the governance of gene editing partly reflects a failure of public engagement with the current state of research in genomics and postgenomics. CRISPR-based gene-editing technology has become embedded in a narrow narrative about the ease and precision of the technique that presents the gene as a stable object under technological control. This narrative fails to position the “ease of CRISPR-based editing” into the wider context of the “complexity of the gene.” While this strategic narrowness of CRISPR narratives aims to create public support for gene-editing technologies, we argue that it stands in the way of socially desirable anticipatory governance and open public dialogue about societal promises and the unintended consequences of gene editing. In addressing the polarization surrounding CRISPR-based editing technology, the article emphasizes the need for engagement with the complex state of postgenomic science that avoids strategic simplifications of the scientific literature in promoting or opposing the commercial use of the gene-editing technology.

Resource type: article: Web Page

Precision Technologies for Agriculture: Digital Farming, Gene-Edited Crops, and the Politics of Sustainability

Publication date: 01/08/2020

This article analyzes the rise of precision technologies for agriculture—specifically digital farming and plant genome editing—and their implications for the politics of environmental sustainability in the agrifood sector. We map out opposing views in the emerging debate over the environmental aspects of these technologies: while proponents see them as vital tools for environmental sustainability, critics view them as antithetical to their own agroecological vision of sustainable agriculture. We argue that key insights from the broader literature on the social effects of technological change—in particular, technological lock-in, the double-edged nature of technology, and uneven power relations—help to explain the political dynamics of this debate. Our analysis highlights the divergent perspectives regarding how these technologies interact with environmental problems, as well as the risks and opportunities they present. Yet, as we argue in the article, developments so far suggest that these dynamics are not always straightforward in practice.

Resource type: article: Web Page

Democratizing CRISPR? Stories, practices, and politics of science and governance on the agricultural gene editing frontier

Publication date: 25/02/2020
Resource type: Adobe Acrobat (.pdf)