Currently showing only Plant & Animal Breeding Resources
Page 3 of 6

Organic farming with gene editing: An oxymoron or a tool for sustainable agriculture?

Publication date: 10/10/2018

A University of California, Berkeley professor stands at the front of the room, delivering her invited talk about the potential of genetic engineering. Her audience, full of organic farming advocates, listens uneasily. She notices a man get up from his seat and move toward the front of the room. Confused, the speaker pauses mid-sentence as she watches him bend over, reach for the power cord, and unplug the projector. The room darkens and silence falls. So much for listening to the ideas of others.

Many organic advocates claim that genetically engineered crops are harmful to human health, the environment, and the farmers who work with them. Biotechnology advocates fire back that genetically engineered crops are safe, reduce insecticide use, and allow farmers in developing countries to produce enough food to feed themselves and their families.

Now, sides are being chosen about whether the new gene editing technology, CRISPR, is really just “GMO 2.0” or a helpful new tool to speed up the plant breeding process. In July, the European Union’s Court of Justice ruled that crops made with CRISPR will be classified as genetically engineered. In the United States, meanwhile, the regulatory system is drawing distinctions between genetic engineering and specific uses of genome editing.

Resource type: article: Web Page

Towards resilience through systems-based plant breeding. A review

Publication date: 22/08/2018

How the growing world population can feed itself is a crucial, multi-dimensional problem that goes beyond sustainable development. Crop production will be affected by many changes in its climatic, agronomic, economic, and societal contexts. Therefore, breeders are challenged to produce cultivars that strengthen both ecological and societal resilience by striving for six international sustainability targets: food security, safety and quality; food and seed sovereignty; social justice; agrobiodiversity; ecosystem services; and climate robustness.

Against this background, we review the state of the art in plant breeding by distinguishing four paradigmatic orientations that currently co-exist: community-based breeding, ecosystem-based breeding, trait-based breeding, and corporate-based breeding, analyzing differences among these orientations. Our main findings are: (1) all four orientations have significant value but none alone will achieve all six sustainability targets; (2) therefore, an overarching approach is needed: “systems-based breeding,” an orientation with the potential to synergize the strengths of the ways of thinking in the current paradigmatic orientations; (3) achieving that requires specific knowledge development and integration, a multitude of suitable breeding strategies and tools, and entrepreneurship, but also a change in attitude based on corporate responsibility, circular economy and true-cost accounting, and fair and green policies.

We conclude that systems-based breeding can create strong interactions between all system components. While seeds are part of the common good and the basis of agrobiodiversity, a diversity in breeding approaches, based on different entrepreneurial approaches, can also be considered part of the required agrobiodiversity. To enable systems-based breeding to play a major role in creating sustainable agriculture, a shared sense of urgency is needed to realize the required changes in breeding approaches, institutions, regulations and protocols. Based on this concept of systems-based breeding, there are opportunities for breeders to play an active role in the development of an ecologically and societally resilient, sustainable agriculture.

Resource type: Adobe Acrobat (.pdf)

What is the available evidence for the application of genome editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map protocol

Publication date: 16/08/2018

Plant breeding is a developing process and breeding methods have continuously evolved over time. In recent years, genome editing techniques such as clustered regularly interspaced short palindromic repeats/CRISPR associated proteins (CRISPR/Cas), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFN), meganucleases (MN) and oligonucleotide-directed mutagenesis (ODM) enabled a precise modification of DNA sequences in plants. Genome editing has already been applied in a wide range of plant species due to its simplicity, time saving and cost-effective application compared to earlier breeding techniques including classical mutagenesis. Although genome editing techniques induce much less unintended modifications in the genome (off-target effects) compared to classical mutagenesis techniques, off-target effects are a prominent point of criticism as they might cause genomic instability, cytotoxicity and cell death.

Resource type: Adobe Acrobat (.pdf)

Who’s talking about non-human Genome Editing? Mapping public discussion in the UK

Publication date: 31/05/2018

This report reviews public discussion about Genome Editing in non-human organisms. Its primary goal is to provide a preliminary baseline regarding the kinds of public discussion about, and interactions with, a development in biotechnology with societal significance.

Previous research and experience governing emerging technologies has shown that they need to be developed in ways that are ethical, safe and accountable, that deliver meaningful public value and that foster public trust in democratic institutions. Past experience in Britain suggests public deliberation and discourse has a vital role to play in developing effective governance arrangements and the nation has developed significant institutional expertise in developing such arrangements.

To date, attention has focused largely on the use of Genome Editing in humans. For instance, in 2015 an international summit produced a consensus statement on human Genome Editing. This was followed by a consensus study by the US National Academies of Sciences, Engineering, and Medicine into the ethics and governance of human Genome Editing, published in 2017. However, Genome Editing techniques span virtually all domains of bioscience and biotechnology that rely on altering genetic sequences. In today’s landscape, this means their envisaged uses in both scientific research, as tools, and in developing new technologies or commercially-valuable processes are widespread. It is therefore vital that non-human applications are considered.

In the UK, the Nuffield Council on Bioethics recently concluded an initial study on the ethics of Genome Editing and is undertaking follow up studies on human Genome Editing and Genome Editing in livestock. The Wellcome Trust is currently funding public engagement on Genome Editing as applied to human health and medicine through the Genome Editing Public Engagement Synergy with the National Coordinating Centre for Public Engagement. This review complements the above work by providing baseline information about public discussion of, and public engagement with, Genome Editing in non-human contexts.

Resource type: Adobe Acrobat (.pdf)

Compatibility of breeding techniques in organic systems

Publication date: 01/01/2018

This IFOAM position paper states that “New genetic engineering technologies …are not compatible with organic farming and must not be used in organic breeding or organic production.” It goes on to list the specific techniques, and calls for “clear legal definitions to be in place which are regularly updated”.

The paper also states “Products obtained through genetic engineering processes should not be released into the environment. In any case such releases should not take place without a prior rigorous, multistakeholder designed and agreed risk assessment protocol that includes input from the organic sector and like-minded movements, and an assessment of the possibility to prevent the presence of such products in organic products and GMO-free products.”

IFOAM asks for the ‘Polluter Pays’ principle to be maintained. This means “On-going costs and harms to organic and non-GMO supply chains from contamination by these new techniques … should be borne by the developers and/or the company that puts the product on the market.” Although the principle is one of the EU directives, sadly it is not guaranteed in post-Brexit Britain.

Resource type: article: Web Page

Perspectives on organic agriculture and new plant breeding techniques

Publication date: 08/11/2017

The organic industry has vocally rejected genetically-modified crops (GMOs), making a public declaration in 1993 that they are incompatible with organic agriculture.

Since then, many organic supporters have campaigned against GMOs, and organic farming regulations in the EU and beyond prohibit their use.

Emerging genetic technologies have sparked renewed interest in this debate, but policy makers are still undecided on whether they should be subject to the same extensive regulations as genetic modification. Within the organic industry, there are different perspectives on whether these new techniques could ever be compatible with organic food production.

In this blog-post Rebecca Nesbit gives us an insight into these differing perspectives, interviewing proponents from each side.

Resource type: article: Web Page

New genetic engineering techniques: precaution, risk, and the need to develop prior societal technology assessment

Publication date: 18/08/2017

Business has been arguing that governments should override the precautionary principle in favor of an “innovation principle.” The new genetic engineering techniques (sometimes called “new breeding techniques”)1 provide the perfect cover for this argument. Proponents assure us that these new techniques are essential to address the crises we face and will provide economic benefit, as long as we set aside the precautionary approach that they claim increasingly hampers technological progress. We are in the midst of powerful high-risk technological developments with potentially severe and irreversible health, environmental, and societal implications. It is vital to develop processes for examining new technologies while they are still being developed. We argue that precaution needs to guide technology development in this area. Indeed, it should precede the technology development. An adequate technology assessment and decision-making process requires concerted effort, courage, and restraint, and it must include the option to decide against developing or deploying some technologies altogether.

Resource type: Adobe Acrobat (.pdf)

Is it only the regulatory status? Broadening the debate on cisgenic plants

Publication date: 26/06/2017

In current debates on emerging technologies for plant breeding in Europe, much attention has been given to the regulatory status of these techniques and their public acceptance. At present, both genetically modified plants with cisgenic approaches—using genes from crossable species—as well as transgenic approaches—using genes from different species—fall under GMO regulation in the EU and both are mandatorily labelled as GMOs. Researchers involved in the early development of cisgenic GM plants convey the message that the potential use and acceptance of cisgenic approaches will be seriously hindered if GMO regulations are not adjusted.

Although the similar treatment and labelling of transgenic and cisgenic plants may be a legitimate concern for the marketability of a cisgenic GM plant, there are concerns around their commercialization that reach beyond the current focus on (de)regulation. In this paper, we will use the development of the cisgenic GM potato that aims to overcome ‘late blight’—the most devastating potato disease worldwide—as a case to argue that it is important to recognize, reflect and respond to broader concerns than the dominant focus on the regulatory ‘burden’ and consumer acceptance. Based on insights we gained from discussing this case with diverse stakeholders within the agricultural sector and potato production in Norway during a series of workshops, we elaborate on additional issues such as the (technical) solution offered; different understandings of the late blight problem; the durability of the potato plant resistance; and patenting and ownership.

Hence, this paper contributes to empirical knowledge on stakeholder perspectives on emerging plant breeding technologies, underscoring the importance to broaden the scope of the debate on the opportunities and challenges of agricultural biotechnologies, such as cisgenic GM plants. The paper offers policy-relevant input to ongoing efforts to broaden the scope of risk assessments of agricultural biotechnologies. We aim to contribute to the recognition of the complex socio-ecological, legal and political dimensions in which these technological developments are entangled as a means to acknowledge, discuss and respond to these concerns and thereby contribute to more comprehensive and responsible developments within agricultural biotechnology.

Resource type: Adobe Acrobat (.pdf)

A world without hunger: organic or GM crops?

Publication date: 11/04/2017

It has been estimated that the world population will increase to 9.2 billion by 2050; supplying the growing population with food will require a significant increase in agricultural production.

A number of agricultural and ecological scientists believe that a large-scale shift to organic farming (OF) would not only increase the world’s food supply, but might be the only way to eradicate hunger sustainably.

Nevertheless, OF has recently come under new scrutiny, not just from critics who fear that a large-scale shift in this direction would cause billions to starve but also from farmers and development agencies who question whether such a shift could improve food security. Meanwhile, the use of genetically modified (GM) crops is growing around the world, leading to possible opportunities to combat food insecurity and hunger. However, the development of GM crops has been a matter of considerable interest and worldwide public controversy.

So far, no one has comprehensively analyzed whether a widespread shift to OF or GM would be the sole solution for both food security and safety. Using a literature review from databases of peer-reviewed scientific publications, books, and official publications, this study aims to address this issue.

Results indicate that OF and GM, to different extents, are able to ensure food security and safety. In developed countries, given that there are relatively few farmers and that their productivity, even without GMOs, is relatively high, OF could be more a viable option.

However, OF is significantly less efficient in land-use terms and may lead to more land being used for agriculture due to its lower yield. In developing countries, where many small-scale farmers have low agricultural productivity and limited access to agricultural technologies and information, an approach with both GM and OF might be a more realistic approach to ensure food security and safety.

Link goes to full text and .pdf options.

Resource type: Web page URL

Sowing fresh seeds – Food, farming and animal welfare post-Brexit

Publication date: 31/01/2017

Brexit gives us the opportunity to think about food and farming from scratch. We need food and farming that produces nutritious food and encourages healthy diets. That enables us to
meet the Paris climate targets and restores water, soils and biodiversity so that they are passed in good shape to future generations. Decent livelihoods for farmers and respect for
animals as sentient beings, as individuals must be core elements of our policy.

There are two important starting points. Firstly, we need to move away from the current practice of formulating policy in silos with different Government departments, or sections of
departments, being responsible for agriculture, the environment, animal welfare, dietary health, climate change and agri-tech. As a result policies in this arena do not cohere and are
sometimes contradictory. For example, Defra tends to press for further intensification even though this has a detrimental impact on soil quality and animal welfare. Public Health
England advises people to eat less red and processed meat while Defra promotes increased meat production.

Secondly, we need to move away from industrial livestock production as this is a key driver of, or an important contributor to:

  • overconsumption of meat and dairy which leads to health problems and will make it
    impossible to meet the Paris climate targets
  • overuse of antibiotics in farming
  • pollution and overuse of water, soil degradation, biodiversity loss and air pollution
  • food insecurity
  • poor animal welfare

Compassion in World Farming  wishes to present the following integrated plan for post Brexit food and farming in England.

Resource type: Adobe Acrobat (.pdf)